II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

WATER RESOURCES ENGINEERING (CIVIL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max. Marks					
		UNIT-I								
1	a)	Explain with the help of a diagram the	L2	CO1	7 M					
		hydrological cycle with components.								
	b)	Explain how the rainfall is measured using	L2	CO1	7 M					
		Syphon type of raingauge along with advantages								
		and disadvantages.								
		OR								
2	a)	Explain the factors which affect the rate of	L2	CO1	7 M					
		evaporation.								
	b)	Explain elaborately about Φ -index and W-index.	L2	CO1	7 M					
	UNIT-II									
3	Th	e ordinates of a 12-hr unit hydrograph are given	L3	CO2	14 M					
	bel	ow. Compute 6-hr unit hydrograph ordinates using								
	S-c	curve technique.								
L										

		Гime	0	6	12	18	24	30	36	42	48	54	60	72				
		$\frac{hr}{2-hr}$	0	1	4	8	16	19	15	12	8	5	3	0				
		JH	0	1	4	0	10	19	15	12	0	3	3	0				
		cumec)																
				1					0	R					<u> </u>			
4	4 a) What are the various factors affecting the runoff?													f?	L2	CO2	5 M	
		Explain.																
	b) Explain in detail about the synthetic unit												it	L2	CO2	9 M		
		hydrograph method.																
	UNIT-III																	
5	a)	Define			•	-		•		-	peci	fic 1	reter	ntio	n.	L2	CO3	9 M
	Write the relation between them.											1.0	002	7) (
	b) State and derive Darcy's law.															L2	CO3	5 M
6	0)	Evoloi	n	in	da	tail	aha	t			for	nt	tun		f	12	CO3	9 M
0	a)	Explai aquife							uie	un	1616	-110	type	28 (Л	L2	COS	9 IVI
	h)	A tube							eter	nen	etra	ites	full	v in	а	L2	CO3	5 M
	0)	artisia								1			•	·			005	5 101
		m. Ca		•								-						
							•											
		drawdown of 3 m. The aquifer consists of sand of effective size of 0.2mm having co-efficient of																
		permeability equal to 50m per day. Assume radius																
	of drawdown is 150m.																	
UNIT-IV																		
7	a)	Interp	ret	the	e re	latio	onsh	ip l	oetw	/een	du	ty,	delta	a an	d	L2	CO4	9 M
	base period with appropriate explanations.																	

	b)	Explain the necessity and importance of	L2	CO4	5 M								
		Irrigation.											
OR													
8	8 a) Define consumptive use of water. Explain the L2 CO4												
	Factors affecting consumptive use of Water.												
	b) Illustrate various methods of assessment of L2 CO4 7												
		quality standards of irrigation water.											
UNIT-V													
9	a)	Why should lining be provided in canals? What	L3	CO5	8 M								
		are the merits and demerits of canal lining?											
	b)	Compare Kennedy's Theory and Lacey's Theory.	L2	CO5	6 M								
OR													
10	De	sign an irrigation channel for the following data	L5	CO5	14 M								
	using Kennedy's theory: Full Supply Discharge =												
	14.	16 cumec, Slope S = $1/5000$, Kutter's rugosity											
	coe	efficient N=0.0225, Critical Velocity ratio m=1,											
	Sid	le slope $Z = \frac{1}{2}$.											